Mister Exam

Other calculators


1/1+sinx+cosx

Integral of 1/1+sinx+cosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                         
  /                         
 |                          
 |  (1 + sin(x) + cos(x)) dx
 |                          
/                           
pi                          
--                          
2                           
$$\int\limits_{\frac{\pi}{2}}^{0} \left(\sin{\left(x \right)} + \cos{\left(x \right)} + 1\right)\, dx$$
Integral(1 + sin(x) + cos(x), (x, pi/2, 0))
Detail solution
  1. Integrate term-by-term:

    1. The integral of sine is negative cosine:

    1. The integral of cosine is sine:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | (1 + sin(x) + cos(x)) dx = C + x - cos(x) + sin(x)
 |                                                   
/                                                    
$$\sin x-\cos x+x$$
The graph
The answer [src]
     pi
-2 - --
     2 
$$-{{\pi+2\,\sin \left({{\pi}\over{2}}\right)-2\,\cos \left({{\pi }\over{2}}\right)+2}\over{2}}$$
=
=
     pi
-2 - --
     2 
$$-2 - \frac{\pi}{2}$$
Numerical answer [src]
-3.5707963267949
-3.5707963267949
The graph
Integral of 1/1+sinx+cosx dx

    Use the examples entering the upper and lower limits of integration.