Mister Exam

Other calculators

Integral of 1/(1+(cos(x))^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
  /               
 |                
 |       1        
 |  ----------- dx
 |         2      
 |  1 + cos (x)   
 |                
/                 
0                 
$$\int\limits_{0}^{\pi} \frac{1}{\cos^{2}{\left(x \right)} + 1}\, dx$$
Integral(1/(1 + cos(x)^2), (x, 0, pi))
The answer (Indefinite) [src]
                              /        /x   pi\                         \         /        /x   pi\                          \
                              |        |- - --|                         |         |        |- - --|                          |
  /                       ___ |        |2   2 |       /      ___    /x\\|     ___ |        |2   2 |       /       ___    /x\\|
 |                      \/ 2 *|pi*floor|------| + atan|1 + \/ 2 *tan|-|||   \/ 2 *|pi*floor|------| + atan|-1 + \/ 2 *tan|-|||
 |      1                     \        \  pi  /       \             \2///         \        \  pi  /       \              \2///
 | ----------- dx = C + ------------------------------------------------- + --------------------------------------------------
 |        2                                     2                                                   2                         
 | 1 + cos (x)                                                                                                                
 |                                                                                                                            
/                                                                                                                             
$$\int \frac{1}{\cos^{2}{\left(x \right)} + 1}\, dx = C + \frac{\sqrt{2} \left(\operatorname{atan}{\left(\sqrt{2} \tan{\left(\frac{x}{2} \right)} - 1 \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{2} + \frac{\sqrt{2} \left(\operatorname{atan}{\left(\sqrt{2} \tan{\left(\frac{x}{2} \right)} + 1 \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{2}$$
The graph
The answer [src]
     ___
pi*\/ 2 
--------
   2    
$$\frac{\sqrt{2} \pi}{2}$$
=
=
     ___
pi*\/ 2 
--------
   2    
$$\frac{\sqrt{2} \pi}{2}$$
pi*sqrt(2)/2
Numerical answer [src]
2.22144146907918
2.22144146907918

    Use the examples entering the upper and lower limits of integration.