Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of e^(x^2) Integral of e^(x^2)
  • Integral of sin(x)^3 Integral of sin(x)^3
  • Integral of √(x^2+1) Integral of √(x^2+1)
  • Integral of cos(5x) Integral of cos(5x)
  • Identical expressions

  • one /((one +cos(x))*sin^2x)
  • 1 divide by ((1 plus co sinus of e of (x)) multiply by sinus of squared x)
  • one divide by ((one plus co sinus of e of (x)) multiply by sinus of squared x)
  • 1/((1+cos(x))*sin2x)
  • 1/1+cosx*sin2x
  • 1/((1+cos(x))*sin²x)
  • 1/((1+cos(x))*sin to the power of 2x)
  • 1/((1+cos(x))sin^2x)
  • 1/((1+cos(x))sin2x)
  • 1/1+cosxsin2x
  • 1/1+cosxsin^2x
  • 1 divide by ((1+cos(x))*sin^2x)
  • 1/((1+cos(x))*sin^2x)dx
  • Similar expressions

  • 1/((1-cos(x))*sin^2x)
  • 1/((1+cosx)*sin^2x)

Integral of 1/((1+cos(x))*sin^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*atan(2)                       
     /                           
    |                            
    |              1             
    |     -------------------- dx
    |                     2      
    |     (1 + cos(x))*sin (x)   
    |                            
   /                             
   pi                            
   --                            
   2                             
$$\int\limits_{\frac{\pi}{2}}^{2 \operatorname{atan}{\left(2 \right)}} \frac{1}{\left(\cos{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)}}\, dx$$
Integral(1/((1 + cos(x))*sin(x)^2), (x, pi/2, 2*atan(2)))
The answer (Indefinite) [src]
  /                                 /x\                 3/x\
 |                               tan|-|              tan |-|
 |          1                       \2/      1           \2/
 | -------------------- dx = C + ------ - -------- + -------
 |                 2               2           /x\      12  
 | (1 + cos(x))*sin (x)                   4*tan|-|          
 |                                             \2/          
/                                                           
$$\int \frac{1}{\left(\cos{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)}}\, dx = C + \frac{\tan^{3}{\left(\frac{x}{2} \right)}}{12} + \frac{\tan{\left(\frac{x}{2} \right)}}{2} - \frac{1}{4 \tan{\left(\frac{x}{2} \right)}}$$
The graph
The answer [src]
29
--
24
$$\frac{29}{24}$$
=
=
29
--
24
$$\frac{29}{24}$$
29/24
Numerical answer [src]
1.20833333333333
1.20833333333333

    Use the examples entering the upper and lower limits of integration.