Mister Exam

Other calculators

Integral of 1/(1+chx)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |               2   
 |  (1 + cosh(x))    
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\left(\cosh{\left(x \right)} + 1\right)^{2}}\, dx$$
Integral(1/((1 + cosh(x))^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                            /x\       3/x\
 |                         tanh|-|   tanh |-|
 |       1                     \2/        \2/
 | -------------- dx = C + ------- - --------
 |              2             2         6    
 | (1 + cosh(x))                             
 |                                           
/                                            
$$\int \frac{1}{\left(\cosh{\left(x \right)} + 1\right)^{2}}\, dx = C - \frac{\tanh^{3}{\left(\frac{x}{2} \right)}}{6} + \frac{\tanh{\left(\frac{x}{2} \right)}}{2}$$
The graph
The answer [src]
                3     
tanh(1/2)   tanh (1/2)
--------- - ----------
    2           6     
$$- \frac{\tanh^{3}{\left(\frac{1}{2} \right)}}{6} + \frac{\tanh{\left(\frac{1}{2} \right)}}{2}$$
=
=
                3     
tanh(1/2)   tanh (1/2)
--------- - ----------
    2           6     
$$- \frac{\tanh^{3}{\left(\frac{1}{2} \right)}}{6} + \frac{\tanh{\left(\frac{1}{2} \right)}}{2}$$
tanh(1/2)/2 - tanh(1/2)^3/6
Numerical answer [src]
0.214610884201969
0.214610884201969

    Use the examples entering the upper and lower limits of integration.