Mister Exam

Other calculators

Integral of 1/((1+5x)*(16+x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |  (1 + 5*x)*(16 + x)   
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{\left(x + 16\right) \left(5 x + 1\right)}\, dx$$
Integral(1/((1 + 5*x)*(16 + x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                      
 |                                                       
 |         1                   log(16 + x)   log(1 + 5*x)
 | ------------------ dx = C - ----------- + ------------
 | (1 + 5*x)*(16 + x)               79            79     
 |                                                       
/                                                        
$$\int \frac{1}{\left(x + 16\right) \left(5 x + 1\right)}\, dx = C - \frac{\log{\left(x + 16 \right)}}{79} + \frac{\log{\left(5 x + 1 \right)}}{79}$$
The graph
The answer [src]
  log(17)   log(5)   log(16)   log(6/5)
- ------- + ------ + ------- + --------
     79       79        79        79   
$$- \frac{\log{\left(17 \right)}}{79} + \frac{\log{\left(\frac{6}{5} \right)}}{79} + \frac{\log{\left(5 \right)}}{79} + \frac{\log{\left(16 \right)}}{79}$$
=
=
  log(17)   log(5)   log(16)   log(6/5)
- ------- + ------ + ------- + --------
     79       79        79        79   
$$- \frac{\log{\left(17 \right)}}{79} + \frac{\log{\left(\frac{6}{5} \right)}}{79} + \frac{\log{\left(5 \right)}}{79} + \frac{\log{\left(16 \right)}}{79}$$
-log(17)/79 + log(5)/79 + log(16)/79 + log(6/5)/79
Numerical answer [src]
0.0219130993343243
0.0219130993343243

    Use the examples entering the upper and lower limits of integration.