Mister Exam

Other calculators

Integral of 1/(1+(5x-7)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |               2   
 |  1 + (5*x - 7)    
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\left(5 x - 7\right)^{2} + 1}\, dx$$
Integral(1/(1 + (5*x - 7)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                      
 |                                       
 |       1                 atan(-7 + 5*x)
 | -------------- dx = C + --------------
 |              2                5       
 | 1 + (5*x - 7)                         
 |                                       
/                                        
$$\int \frac{1}{\left(5 x - 7\right)^{2} + 1}\, dx = C + \frac{\operatorname{atan}{\left(5 x - 7 \right)}}{5}$$
The graph
The answer [src]
  atan(2)   atan(7)
- ------- + -------
     5         5   
$$- \frac{\operatorname{atan}{\left(2 \right)}}{5} + \frac{\operatorname{atan}{\left(7 \right)}}{5}$$
=
=
  atan(2)   atan(7)
- ------- + -------
     5         5   
$$- \frac{\operatorname{atan}{\left(2 \right)}}{5} + \frac{\operatorname{atan}{\left(7 \right)}}{5}$$
-atan(2)/5 + atan(7)/5
Numerical answer [src]
0.0643501108793284
0.0643501108793284

    Use the examples entering the upper and lower limits of integration.