Mister Exam

Other calculators

Integral of 1/√(1-y^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |         1        
 |  1*----------- dy
 |       ________   
 |      /      4    
 |    \/  1 - y     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sqrt{1 - y^{4}}}\, dy$$
Integral(1/sqrt(1 - y^4), (y, 0, 1))
The answer (Indefinite) [src]
                                         _                         
  /                                     |_  /1/4, 1/2 |  4  2*pi*I\
 |                        y*Gamma(1/4)* |   |         | y *e      |
 |        1                            2  1 \  5/4    |           /
 | 1*----------- dy = C + -----------------------------------------
 |      ________                         4*Gamma(5/4)              
 |     /      4                                                    
 |   \/  1 - y                                                     
 |                                                                 
/                                                                  
$$\int {{{1}\over{\sqrt{1-y^4}}}}{\;dy}$$
The answer [src]
             _                
            |_  /1/4, 1/2 |  \
Gamma(1/4)* |   |         | 1|
           2  1 \  5/4    |  /
------------------------------
         4*Gamma(5/4)         
$${{\beta\left({{1}\over{4}} , {{1}\over{2}}\right)}\over{4}}$$
=
=
             _                
            |_  /1/4, 1/2 |  \
Gamma(1/4)* |   |         | 1|
           2  1 \  5/4    |  /
------------------------------
         4*Gamma(5/4)         
$$\frac{\Gamma\left(\frac{1}{4}\right) {{}_{2}F_{1}\left(\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle| {1} \right)}}{4 \Gamma\left(\frac{5}{4}\right)}$$
Numerical answer [src]
1.31102877681116
1.31102877681116

    Use the examples entering the upper and lower limits of integration.