Mister Exam

Other calculators


1/(1-2x-3x^2)

Integral of 1/(1-2x-3x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |          1          
 |  1*-------------- dx
 |                 2   
 |    1 - 2*x - 3*x    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{- 3 x^{2} - 2 x + 1}\, dx$$
Integral(1/(1 - 2*x - 3*x^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                      
 |                                                       
 |         1                 log(-1 + 3*x)   log(3 + 3*x)
 | 1*-------------- dx = C - ------------- + ------------
 |                2                4              4      
 |   1 - 2*x - 3*x                                       
 |                                                       
/                                                        
$$\int 1 \cdot \frac{1}{- 3 x^{2} - 2 x + 1}\, dx = C - \frac{\log{\left(3 x - 1 \right)}}{4} + \frac{\log{\left(3 x + 3 \right)}}{4}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
Numerical answer [src]
-29.2266859268348
-29.2266859268348
The graph
Integral of 1/(1-2x-3x^2) dx

    Use the examples entering the upper and lower limits of integration.