Mister Exam

Other calculators

Integral of 1/(1-e^(-2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |        1       
 |  1*--------- dx
 |         -2*x   
 |    1 - e       
 |                
/                 
0                 
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{1 - e^{- 2 x}}\, dx$$
Integral(1/(1 - 1/E^(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                     
 |                         /        -2*x\      /   -2*x\
 |       1              log\-2 + 2*e    /   log\2*e    /
 | 1*--------- dx = C + ----------------- - ------------
 |        -2*x                  2                2      
 |   1 - e                                              
 |                                                      
/                                                       
$$\int 1 \cdot \frac{1}{1 - e^{- 2 x}}\, dx = C + \frac{\log{\left(-2 + 2 e^{- 2 x} \right)}}{2} - \frac{\log{\left(2 e^{- 2 x} \right)}}{2}$$
The answer [src]
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
=
=
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
Numerical answer [src]
22.6259427477791
22.6259427477791

    Use the examples entering the upper and lower limits of integration.