Mister Exam

Other calculators

Integral of 1/(9*x^2-7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     1       
 |  -------- dx
 |     2       
 |  9*x  - 7   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{1}{9 x^{2} - 7}\, dx$$
Integral(1/(9*x^2 - 7), (x, 0, 1))
Detail solution

    PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=9, c=-7, context=1/(9*x**2 - 7), symbol=x), False), (ArccothRule(a=1, b=9, c=-7, context=1/(9*x**2 - 7), symbol=x), x**2 > 7/9), (ArctanhRule(a=1, b=9, c=-7, context=1/(9*x**2 - 7), symbol=x), x**2 < 7/9)], context=1/(9*x**2 - 7), symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                     //            /      ___\               \
                     ||   ___      |3*x*\/ 7 |               |
                     ||-\/ 7 *acoth|---------|               |
  /                  ||            \    7    /        2      |
 |                   ||------------------------  for x  > 7/9|
 |    1              ||           21                         |
 | -------- dx = C + |<                                      |
 |    2              ||            /      ___\               |
 | 9*x  - 7          ||   ___      |3*x*\/ 7 |               |
 |                   ||-\/ 7 *atanh|---------|               |
/                    ||            \    7    /        2      |
                     ||------------------------  for x  < 7/9|
                     \\           21                         /
$$\int \frac{1}{9 x^{2} - 7}\, dx = C + \begin{cases} - \frac{\sqrt{7} \operatorname{acoth}{\left(\frac{3 \sqrt{7} x}{7} \right)}}{21} & \text{for}\: x^{2} > \frac{7}{9} \\- \frac{\sqrt{7} \operatorname{atanh}{\left(\frac{3 \sqrt{7} x}{7} \right)}}{21} & \text{for}\: x^{2} < \frac{7}{9} \end{cases}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-0.122200289921172
-0.122200289921172

    Use the examples entering the upper and lower limits of integration.