1 / | | 1 | -------- dx | 2 | 9*x - 7 | / 0
Integral(1/(9*x^2 - 7), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=9, c=-7, context=1/(9*x**2 - 7), symbol=x), False), (ArccothRule(a=1, b=9, c=-7, context=1/(9*x**2 - 7), symbol=x), x**2 > 7/9), (ArctanhRule(a=1, b=9, c=-7, context=1/(9*x**2 - 7), symbol=x), x**2 < 7/9)], context=1/(9*x**2 - 7), symbol=x)
Add the constant of integration:
The answer is:
// / ___\ \
|| ___ |3*x*\/ 7 | |
||-\/ 7 *acoth|---------| |
/ || \ 7 / 2 |
| ||------------------------ for x > 7/9|
| 1 || 21 |
| -------- dx = C + |< |
| 2 || / ___\ |
| 9*x - 7 || ___ |3*x*\/ 7 | |
| ||-\/ 7 *atanh|---------| |
/ || \ 7 / 2 |
||------------------------ for x < 7/9|
\\ 21 /
Use the examples entering the upper and lower limits of integration.