Mister Exam

Integral of 1/((n)ln(n)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     1       
 |  -------- dn
 |  n*log(n)   
 |             
/              
2              
211nlog(n)dn\int\limits_{2}^{1} \frac{1}{n \log{\left(n \right)}}\, dn
Integral(1/(n*log(n)), (n, 2, 1))
The answer (Indefinite) [src]
  /                             
 |                              
 |    1                         
 | -------- dn = C + log(log(n))
 | n*log(n)                     
 |                              
/                               
1nlog(n)dn=C+log(log(n))\int \frac{1}{n \log{\left(n \right)}}\, dn = C + \log{\left(\log{\left(n \right)} \right)}
The graph
1.002.001.101.201.301.401.501.601.701.801.90-1000010000
The answer [src]
-oo
-\infty
=
=
-oo
-\infty
-oo
Numerical answer [src]
-43.7244186157368
-43.7244186157368

    Use the examples entering the upper and lower limits of integration.