Mister Exam

Other calculators

Integral of 1/(15+th(x)*7) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |  15 + tanh(x)*7   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{7 \tanh{\left(x \right)} + 15}\, dx$$
Integral(1/(15 + tanh(x)*7), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                       
 |                                                                        
 |       1                 7*log(15/7 + tanh(x))   x    7*log(1 + tanh(x))
 | -------------- dx = C - --------------------- + -- + ------------------
 | 15 + tanh(x)*7                   176            22          176        
 |                                                                        
/                                                                         
$$\int \frac{1}{7 \tanh{\left(x \right)} + 15}\, dx = C + \frac{x}{22} + \frac{7 \log{\left(\tanh{\left(x \right)} + 1 \right)}}{176} - \frac{7 \log{\left(\tanh{\left(x \right)} + \frac{15}{7} \right)}}{176}$$
The graph
The answer [src]
1    7*log(15/7 + tanh(1))   7*log(15/7)   7*log(1 + tanh(1))
-- - --------------------- + ----------- + ------------------
22            176                176              176        
$$- \frac{7 \log{\left(\tanh{\left(1 \right)} + \frac{15}{7} \right)}}{176} + \frac{7 \log{\left(\tanh{\left(1 \right)} + 1 \right)}}{176} + \frac{7 \log{\left(\frac{15}{7} \right)}}{176} + \frac{1}{22}$$
=
=
1    7*log(15/7 + tanh(1))   7*log(15/7)   7*log(1 + tanh(1))
-- - --------------------- + ----------- + ------------------
22            176                176              176        
$$- \frac{7 \log{\left(\tanh{\left(1 \right)} + \frac{15}{7} \right)}}{176} + \frac{7 \log{\left(\tanh{\left(1 \right)} + 1 \right)}}{176} + \frac{7 \log{\left(\frac{15}{7} \right)}}{176} + \frac{1}{22}$$
1/22 - 7*log(15/7 + tanh(1))/176 + 7*log(15/7)/176 + 7*log(1 + tanh(1))/176
Numerical answer [src]
0.0558795631547604
0.0558795631547604

    Use the examples entering the upper and lower limits of integration.