Mister Exam

Other calculators


1/(exp(x)+1)

Integral of 1/(exp(x)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dx
 |   x       
 |  e  + 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{e^{x} + 1}\, dx$$
Integral(1/(exp(x) + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                            
 |                             
 |   1                /     -x\
 | ------ dx = C - log\1 + e  /
 |  x                          
 | e  + 1                      
 |                             
/                              
$$\int \frac{1}{e^{x} + 1}\, dx = C - \log{\left(1 + e^{- x} \right)}$$
The graph
The answer [src]
1 - log(1 + E) + log(2)
$$- \log{\left(1 + e \right)} + \log{\left(2 \right)} + 1$$
=
=
1 - log(1 + E) + log(2)
$$- \log{\left(1 + e \right)} + \log{\left(2 \right)} + 1$$
1 - log(1 + E) + log(2)
Numerical answer [src]
0.379885493041722
0.379885493041722
The graph
Integral of 1/(exp(x)+1) dx

    Use the examples entering the upper and lower limits of integration.