log(3) / | | 1 | 1*-------- dx | x -x | e + e | / 0
Integral(1/(E^x + E^(-x)), (x, 0, log(3)))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 1 / x\ | 1*-------- dx = C + atan\e / | x -x | e + e | /
/ 2 \ / 2 \ - RootSum\4*z + 1, i -> i*log(1 + 2*i)/ + RootSum\4*z + 1, i -> i*log(3 + 2*i)/
=
/ 2 \ / 2 \ - RootSum\4*z + 1, i -> i*log(1 + 2*i)/ + RootSum\4*z + 1, i -> i*log(3 + 2*i)/
Use the examples entering the upper and lower limits of integration.