1 / | | 1 | -------- dx | 2 | 8*x - 9 | / 0
Integral(1/(8*x^2 - 9), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=8, c=-9, context=1/(8*x**2 - 9), symbol=x), False), (ArccothRule(a=1, b=8, c=-9, context=1/(8*x**2 - 9), symbol=x), x**2 > 9/8), (ArctanhRule(a=1, b=8, c=-9, context=1/(8*x**2 - 9), symbol=x), x**2 < 9/8)], context=1/(8*x**2 - 9), symbol=x)
Add the constant of integration:
The answer is:
// / ___\ \ || ___ |2*x*\/ 2 | | ||-\/ 2 *acoth|---------| | / || \ 3 / 2 | | ||------------------------ for x > 9/8| | 1 || 12 | | -------- dx = C + |< | | 2 || / ___\ | | 8*x - 9 || ___ |2*x*\/ 2 | | | ||-\/ 2 *atanh|---------| | / || \ 3 / 2 | ||------------------------ for x < 9/8| \\ 12 /
/ / ___\\ / ___\ / / ___\\ / ___\ ___ | |3*\/ 2 || ___ | 3*\/ 2 | ___ | | 3*\/ 2 || ___ |3*\/ 2 | \/ 2 *|pi*I + log|-------|| \/ 2 *log|1 + -------| \/ 2 *|pi*I + log|-1 + -------|| \/ 2 *log|-------| \ \ 4 // \ 4 / \ \ 4 // \ 4 / - --------------------------- - ---------------------- + -------------------------------- + ------------------ 24 24 24 24
=
/ / ___\\ / ___\ / / ___\\ / ___\ ___ | |3*\/ 2 || ___ | 3*\/ 2 | ___ | | 3*\/ 2 || ___ |3*\/ 2 | \/ 2 *|pi*I + log|-------|| \/ 2 *log|1 + -------| \/ 2 *|pi*I + log|-1 + -------|| \/ 2 *log|-------| \ \ 4 // \ 4 / \ \ 4 // \ 4 / - --------------------------- - ---------------------- + -------------------------------- + ------------------ 24 24 24 24
-sqrt(2)*(pi*i + log(3*sqrt(2)/4))/24 - sqrt(2)*log(1 + 3*sqrt(2)/4)/24 + sqrt(2)*(pi*i + log(-1 + 3*sqrt(2)/4))/24 + sqrt(2)*log(3*sqrt(2)/4)/24
Use the examples entering the upper and lower limits of integration.