Mister Exam

Other calculators


1/(8*sqrt(3))

Integral of 1/(8*sqrt(3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         ___            
 4 + 4*\/ 3             
      /                 
     |                  
     |           1      
     |      1*------- dx
     |            ___   
     |        8*\/ 3    
     |                  
    /                   
        ___             
4 - 4*\/ 3              
$$\int\limits_{4 - 4 \sqrt{3}}^{4 + 4 \sqrt{3}} 1 \cdot \frac{1}{8 \sqrt{3}}\, dx$$
Integral(1/(8*sqrt(3)), (x, 4 - 4*sqrt(3), 4 + 4*sqrt(3)))
Detail solution
  1. The integral of a constant is the constant times the variable of integration:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          
 |                        ___
 |      1               \/ 3 
 | 1*------- dx = C + x*-----
 |       ___              24 
 |   8*\/ 3                  
 |                           
/                            
$$\int 1 \cdot \frac{1}{8 \sqrt{3}}\, dx = C + \frac{\sqrt{3}}{24} x$$
The graph
The answer [src]
    ___ /        ___\     ___ /        ___\
  \/ 3 *\4 - 4*\/ 3 /   \/ 3 *\4 + 4*\/ 3 /
- ------------------- + -------------------
           24                    24        
$$- \frac{\sqrt{3} \cdot \left(4 - 4 \sqrt{3}\right)}{24} + \frac{\sqrt{3} \cdot \left(4 + 4 \sqrt{3}\right)}{24}$$
=
=
    ___ /        ___\     ___ /        ___\
  \/ 3 *\4 - 4*\/ 3 /   \/ 3 *\4 + 4*\/ 3 /
- ------------------- + -------------------
           24                    24        
$$- \frac{\sqrt{3} \cdot \left(4 - 4 \sqrt{3}\right)}{24} + \frac{\sqrt{3} \cdot \left(4 + 4 \sqrt{3}\right)}{24}$$
Numerical answer [src]
1.0
1.0
The graph
Integral of 1/(8*sqrt(3)) dx

    Use the examples entering the upper and lower limits of integration.