Integral of 1/e^x+e^-x dx
The solution
Detail solution
-
Integrate term-by-term:
-
Let u=−x.
Then let du=−dx and substitute −du:
∫(−eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −eu
Now substitute u back in:
-
Let u=ex.
Then let du=exdx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
The result is: −2e−x
-
Add the constant of integration:
−2e−x+constant
The answer is:
−2e−x+constant
The answer (Indefinite)
[src]
/
|
| /1 -x\ -x
| |-- + E | dx = C - 2*e
| | x |
| \E /
|
/
∫(e−x+ex1)dx=C−2e−x
The graph
Use the examples entering the upper and lower limits of integration.