Mister Exam

Other calculators


1/e^x+e^-x

Integral of 1/e^x+e^-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  /1     -x\   
 |  |-- + E  | dx
 |  | x      |   
 |  \E       /   
 |               
/                
0                
01(ex+1ex)dx\int\limits_{0}^{1} \left(e^{- x} + \frac{1}{e^{x}}\right)\, dx
Integral(1/(E^x) + E^(-x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute du- du:

      (eu)du\int \left(- e^{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu- e^{u}

      Now substitute uu back in:

      ex- e^{- x}

    1. Let u=exu = e^{x}.

      Then let du=exdxdu = e^{x} dx and substitute dudu:

      1u2du\int \frac{1}{u^{2}}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

      Now substitute uu back in:

      ex- e^{- x}

    The result is: 2ex- 2 e^{- x}

  2. Add the constant of integration:

    2ex+constant- 2 e^{- x}+ \mathrm{constant}


The answer is:

2ex+constant- 2 e^{- x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         
 |                          
 | /1     -x\             -x
 | |-- + E  | dx = C - 2*e  
 | | x      |               
 | \E       /               
 |                          
/                           
(ex+1ex)dx=C2ex\int \left(e^{- x} + \frac{1}{e^{x}}\right)\, dx = C - 2 e^{- x}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
       -1
2 - 2*e  
22e2 - \frac{2}{e}
=
=
       -1
2 - 2*e  
22e2 - \frac{2}{e}
2 - 2*exp(-1)
Numerical answer [src]
1.26424111765712
1.26424111765712
The graph
Integral of 1/e^x+e^-x dx

    Use the examples entering the upper and lower limits of integration.