Mister Exam

Other calculators


1/e^x+e^-x

Integral of 1/e^x+e^-x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  /1     -x\   
 |  |-- + E  | dx
 |  | x      |   
 |  \E       /   
 |               
/                
0                
$$\int\limits_{0}^{1} \left(e^{- x} + \frac{1}{e^{x}}\right)\, dx$$
Integral(1/(E^x) + E^(-x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                         
 |                          
 | /1     -x\             -x
 | |-- + E  | dx = C - 2*e  
 | | x      |               
 | \E       /               
 |                          
/                           
$$\int \left(e^{- x} + \frac{1}{e^{x}}\right)\, dx = C - 2 e^{- x}$$
The graph
The answer [src]
       -1
2 - 2*e  
$$2 - \frac{2}{e}$$
=
=
       -1
2 - 2*e  
$$2 - \frac{2}{e}$$
2 - 2*exp(-1)
Numerical answer [src]
1.26424111765712
1.26424111765712
The graph
Integral of 1/e^x+e^-x dx

    Use the examples entering the upper and lower limits of integration.