Mister Exam

Other calculators


1/(e^(2x)+1)

Integral of 1/(e^(2x)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     1       
 |  -------- dx
 |   2*x       
 |  E    + 1   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{1}{e^{2 x} + 1}\, dx$$
Integral(1/(E^(2*x) + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                                               
 |                      /   2*x\      /       2*x\
 |    1              log\2*e   /   log\2 + 2*e   /
 | -------- dx = C + ----------- - ---------------
 |  2*x                   2               2       
 | E    + 1                                       
 |                                                
/                                                 
$$\int \frac{1}{e^{2 x} + 1}\, dx = C - \frac{\log{\left(2 e^{2 x} + 2 \right)}}{2} + \frac{\log{\left(2 e^{2 x} \right)}}{2}$$
The graph
The answer [src]
                /     2\
    log(2)   log\1 + e /
1 + ------ - -----------
      2           2     
$$- \frac{\log{\left(1 + e^{2} \right)}}{2} + \frac{\log{\left(2 \right)}}{2} + 1$$
=
=
                /     2\
    log(2)   log\1 + e /
1 + ------ - -----------
      2           2     
$$- \frac{\log{\left(1 + e^{2} \right)}}{2} + \frac{\log{\left(2 \right)}}{2} + 1$$
1 + log(2)/2 - log(1 + exp(2))/2
Numerical answer [src]
0.283109584758486
0.283109584758486
The graph
Integral of 1/(e^(2x)+1) dx

    Use the examples entering the upper and lower limits of integration.