Mister Exam

Other calculators

Integral of 1/(cbrt(5-6*x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   1               
   /               
  |                
  |       1        
  |  ----------- dx
  |  3 _________   
  |  \/ 5 - 6*x    
  |                
 /                 
-1/2               
$$\int\limits_{- \frac{1}{2}}^{1} \frac{1}{\sqrt[3]{5 - 6 x}}\, dx$$
Integral(1/((5 - 6*x)^(1/3)), (x, -1/2, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               2/3
 |      1               (5 - 6*x)   
 | ----------- dx = C - ------------
 | 3 _________               4      
 | \/ 5 - 6*x                       
 |                                  
/                                   
$$\int \frac{1}{\sqrt[3]{5 - 6 x}}\, dx = C - \frac{\left(5 - 6 x\right)^{\frac{2}{3}}}{4}$$
The graph
The answer [src]
        2/3
    (-1)   
1 - -------
       4   
$$1 - \frac{\left(-1\right)^{\frac{2}{3}}}{4}$$
=
=
        2/3
    (-1)   
1 - -------
       4   
$$1 - \frac{\left(-1\right)^{\frac{2}{3}}}{4}$$
1 - (-1)^(2/3)/4
Numerical answer [src]
(1.11370031232512 - 0.223516945168406j)
(1.11370031232512 - 0.223516945168406j)

    Use the examples entering the upper and lower limits of integration.