Mister Exam

Other calculators

Integral of 1/(cos(x))^(-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |     1       
 |  -------- dx
 |  /  1   \   
 |  |------|   
 |  \cos(x)/   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{1}{\frac{1}{\cos{\left(x \right)}}}\, dx$$
Integral(1/(1/cos(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                        
 |                         
 |    1                    
 | -------- dx = C + sin(x)
 | /  1   \                
 | |------|                
 | \cos(x)/                
 |                         
/                          
$$\int \frac{1}{\frac{1}{\cos{\left(x \right)}}}\, dx = C + \sin{\left(x \right)}$$
The graph
The answer [src]
sin(1)
$$\sin{\left(1 \right)}$$
=
=
sin(1)
$$\sin{\left(1 \right)}$$
sin(1)
Numerical answer [src]
0.841470984807897
0.841470984807897

    Use the examples entering the upper and lower limits of integration.