Mister Exam

Other calculators

Integral of 1/(cosxsin^3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |            3      
 |  cos(x)*sin (x)   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\sin^{3}{\left(x \right)} \cos{\left(x \right)}}\, dx$$
Integral(1/(cos(x)*sin(x)^3), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                   
 |                                        /        2   \              
 |       1                     1       log\-1 + sin (x)/              
 | -------------- dx = C - --------- - ----------------- + log(sin(x))
 |           3                  2              2                      
 | cos(x)*sin (x)          2*sin (x)                                  
 |                                                                    
/                                                                     
$$\int \frac{1}{\sin^{3}{\left(x \right)} \cos{\left(x \right)}}\, dx = C - \frac{\log{\left(\sin^{2}{\left(x \right)} - 1 \right)}}{2} + \log{\left(\sin{\left(x \right)} \right)} - \frac{1}{2 \sin^{2}{\left(x \right)}}$$
The answer [src]
     pi*I
oo - ----
      2  
$$\infty - \frac{i \pi}{2}$$
=
=
     pi*I
oo - ----
      2  
$$\infty - \frac{i \pi}{2}$$
oo - pi*i/2
Numerical answer [src]
9.15365037903492e+37
9.15365037903492e+37

    Use the examples entering the upper and lower limits of integration.