Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/(1+4x^2) Integral of 1/(1+4x^2)
  • Integral of (sec(x))^3 Integral of (sec(x))^3
  • Integral of sec^3 Integral of sec^3
  • Integral of x*3^x Integral of x*3^x
  • Identical expressions

  • one /(cos^ three (x)sin(x))
  • 1 divide by ( co sinus of e of cubed (x) sinus of (x))
  • one divide by ( co sinus of e of to the power of three (x) sinus of (x))
  • 1/(cos3(x)sin(x))
  • 1/cos3xsinx
  • 1/(cos³(x)sin(x))
  • 1/(cos to the power of 3(x)sin(x))
  • 1/cos^3xsinx
  • 1 divide by (cos^3(x)sin(x))
  • 1/(cos^3(x)sin(x))dx
  • Similar expressions

  • 1/(cos^3(x)sinx)

Integral of 1/(cos^3(x)sin(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |          1          
 |  1*-------------- dx
 |       3             
 |    cos (x)*sin(x)   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sin{\left(x \right)} \cos^{3}{\left(x \right)}}\, dx$$
Integral(1/(cos(x)^3*sin(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                     
 |                                          /        2   \              
 |         1                     1       log\-1 + cos (x)/              
 | 1*-------------- dx = C + --------- + ----------------- - log(cos(x))
 |      3                         2              2                      
 |   cos (x)*sin(x)          2*cos (x)                                  
 |                                                                      
/                                                                       
$$-{{\log \left(\sin ^2x-1\right)}\over{2}}+\log \sin x-{{1}\over{2\, \sin ^2x-2}}$$
The answer [src]
     pi*I
oo + ----
      2  
$${\it \%a}$$
=
=
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
Numerical answer [src]
45.7462282685172
45.7462282685172

    Use the examples entering the upper and lower limits of integration.