Mister Exam

Other calculators


1/(cos^4xsin^4x)

Integral of 1/(cos^4xsin^4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |     4       4      
 |  cos (x)*sin (x)   
 |                    
/                     
0                     
001sin4(x)cos4(x)dx\int\limits_{0}^{0} \frac{1}{\sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)}}\, dx
Integral(1/(cos(x)^4*sin(x)^4), (x, 0, 0))
The answer (Indefinite) [src]
  /                                                  
 |                                                   
 |        1                 16*cos(2*x)    8*cos(2*x)
 | --------------- dx = C - ----------- - -----------
 |    4       4              3*sin(2*x)        3     
 | cos (x)*sin (x)                        3*sin (2*x)
 |                                                   
/                                                    
1sin4(x)cos4(x)dx=C16cos(2x)3sin(2x)8cos(2x)3sin3(2x)\int \frac{1}{\sin^{4}{\left(x \right)} \cos^{4}{\left(x \right)}}\, dx = C - \frac{16 \cos{\left(2 x \right)}}{3 \sin{\left(2 x \right)}} - \frac{8 \cos{\left(2 x \right)}}{3 \sin^{3}{\left(2 x \right)}}
The graph
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0
The graph
Integral of 1/(cos^4xsin^4x) dx

    Use the examples entering the upper and lower limits of integration.