Mister Exam

Other calculators

Integral of 1/cos(1-2x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |     2            
 |  cos (1 - 2*x)   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{\cos^{2}{\left(1 - 2 x \right)}}\, dx$$
Integral(1/(cos(1 - 2*x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                          
 |                                           
 |       1                   tan(-1/2 + x)   
 | ------------- dx = C - -------------------
 |    2                           2          
 | cos (1 - 2*x)          -1 + tan (-1/2 + x)
 |                                           
/                                            
$$\int \frac{1}{\cos^{2}{\left(1 - 2 x \right)}}\, dx = C - \frac{\tan{\left(x - \frac{1}{2} \right)}}{\tan^{2}{\left(x - \frac{1}{2} \right)} - 1}$$
The graph
The answer [src]
 -2*tan(1/2)  
--------------
        2     
-1 + tan (1/2)
$$- \frac{2 \tan{\left(\frac{1}{2} \right)}}{-1 + \tan^{2}{\left(\frac{1}{2} \right)}}$$
=
=
 -2*tan(1/2)  
--------------
        2     
-1 + tan (1/2)
$$- \frac{2 \tan{\left(\frac{1}{2} \right)}}{-1 + \tan^{2}{\left(\frac{1}{2} \right)}}$$
-2*tan(1/2)/(-1 + tan(1/2)^2)
Numerical answer [src]
1.5574077246549
1.5574077246549

    Use the examples entering the upper and lower limits of integration.