Mister Exam

Other calculators

Integral of 1/(chx+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |  cosh(x) + 1   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{1}{\cosh{\left(x \right)} + 1}\, dx$$
Integral(1/(cosh(x) + 1), (x, 0, 1))
The answer (Indefinite) [src]
  /                            
 |                             
 |      1                   /x\
 | ----------- dx = C + tanh|-|
 | cosh(x) + 1              \2/
 |                             
/                              
$$\int \frac{1}{\cosh{\left(x \right)} + 1}\, dx = C + \tanh{\left(\frac{x}{2} \right)}$$
The graph
The answer [src]
tanh(1/2)
$$\tanh{\left(\frac{1}{2} \right)}$$
=
=
tanh(1/2)
$$\tanh{\left(\frac{1}{2} \right)}$$
tanh(1/2)
Numerical answer [src]
0.46211715726001
0.46211715726001

    Use the examples entering the upper and lower limits of integration.