Mister Exam

Integral of 1/chx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     1      
 |  ------- dx
 |  cosh(x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{1}{\cosh{\left(x \right)}}\, dx$$
Integral(1/cosh(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                
 |                                 
 |    1                   /    /x\\
 | ------- dx = C + 2*atan|tanh|-||
 | cosh(x)                \    \2//
 |                                 
/                                  
$$\int \frac{1}{\cosh{\left(x \right)}}\, dx = C + 2 \operatorname{atan}{\left(\tanh{\left(\frac{x}{2} \right)} \right)}$$
The graph
The answer [src]
2*atan(tanh(1/2))
$$2 \operatorname{atan}{\left(\tanh{\left(\frac{1}{2} \right)} \right)}$$
=
=
2*atan(tanh(1/2))
$$2 \operatorname{atan}{\left(\tanh{\left(\frac{1}{2} \right)} \right)}$$
2*atan(tanh(1/2))
Numerical answer [src]
0.865769483239659
0.865769483239659
The graph
Integral of 1/chx dx

    Use the examples entering the upper and lower limits of integration.