Mister Exam

Other calculators

Integral of 1/(ch(x)(ch(x)+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |  cosh(x)*(cosh(x) + 1)   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \frac{1}{\left(\cosh{\left(x \right)} + 1\right) \cosh{\left(x \right)}}\, dx$$
Integral(1/(cosh(x)*(cosh(x) + 1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                        
 |                                                         
 |           1                        /x\         /    /x\\
 | --------------------- dx = C - tanh|-| + 2*atan|tanh|-||
 | cosh(x)*(cosh(x) + 1)              \2/         \    \2//
 |                                                         
/                                                          
$$\int \frac{1}{\left(\cosh{\left(x \right)} + 1\right) \cosh{\left(x \right)}}\, dx = C - \tanh{\left(\frac{x}{2} \right)} + 2 \operatorname{atan}{\left(\tanh{\left(\frac{x}{2} \right)} \right)}$$
The graph
The answer [src]
-tanh(1/2) + 2*atan(tanh(1/2))
$$- \tanh{\left(\frac{1}{2} \right)} + 2 \operatorname{atan}{\left(\tanh{\left(\frac{1}{2} \right)} \right)}$$
=
=
-tanh(1/2) + 2*atan(tanh(1/2))
$$- \tanh{\left(\frac{1}{2} \right)} + 2 \operatorname{atan}{\left(\tanh{\left(\frac{1}{2} \right)} \right)}$$
-tanh(1/2) + 2*atan(tanh(1/2))
Numerical answer [src]
0.403652325979649
0.403652325979649

    Use the examples entering the upper and lower limits of integration.