Mister Exam

Other calculators

Integral of 1/arctg2x(1+4x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          2   
 |   1 + 4*x    
 |  --------- dx
 |  atan(2*x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{4 x^{2} + 1}{\operatorname{atan}{\left(2 x \right)}}\, dx$$
Integral((1 + 4*x^2)/atan(2*x), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. Don't know the steps in finding this integral.

      But the integral is

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       /                              
 |                       |                  /            
 |         2             |      2          |             
 |  1 + 4*x              |     x           |     1       
 | --------- dx = C + 4* | --------- dx +  | --------- dx
 | atan(2*x)             | atan(2*x)       | atan(2*x)   
 |                       |                 |             
/                       /                 /              
$$\int \frac{4 x^{2} + 1}{\operatorname{atan}{\left(2 x \right)}}\, dx = C + 4 \int \frac{x^{2}}{\operatorname{atan}{\left(2 x \right)}}\, dx + \int \frac{1}{\operatorname{atan}{\left(2 x \right)}}\, dx$$
The answer [src]
  1             
  /             
 |              
 |          2   
 |   1 + 4*x    
 |  --------- dx
 |  atan(2*x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{4 x^{2} + 1}{\operatorname{atan}{\left(2 x \right)}}\, dx$$
=
=
  1             
  /             
 |              
 |          2   
 |   1 + 4*x    
 |  --------- dx
 |  atan(2*x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{4 x^{2} + 1}{\operatorname{atan}{\left(2 x \right)}}\, dx$$
Integral((1 + 4*x^2)/atan(2*x), (x, 0, 1))
Numerical answer [src]
23.750004414302
23.750004414302

    Use the examples entering the upper and lower limits of integration.