Mister Exam

Other calculators

Integral of 1/(a^2-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     1      
 |  ------- dx
 |   2    2   
 |  a  - x    
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{1}{a^{2} - x^{2}}\, dx$$
Integral(1/(a^2 - x^2), (x, 0, 1))
Detail solution
  1. The integral of is .

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                        /   x    \
                    atan|--------|
  /                     |   _____|
 |                      |  /   2 |
 |    1                 \\/  -a  /
 | ------- dx = C - --------------
 |  2    2                _____   
 | a  - x                /   2    
 |                     \/  -a     
/                                 
$$\int \frac{1}{a^{2} - x^{2}}\, dx = C - \frac{\operatorname{atan}{\left(\frac{x}{\sqrt{- a^{2}}} \right)}}{\sqrt{- a^{2}}}$$
The answer [src]
log(-a)   log(a)   log(1 - a)   log(1 + a)
------- - ------   ---------- - ----------
   2        2          2            2     
---------------- - -----------------------
       a                      a           
$$\frac{\frac{\log{\left(- a \right)}}{2} - \frac{\log{\left(a \right)}}{2}}{a} - \frac{\frac{\log{\left(1 - a \right)}}{2} - \frac{\log{\left(a + 1 \right)}}{2}}{a}$$
=
=
log(-a)   log(a)   log(1 - a)   log(1 + a)
------- - ------   ---------- - ----------
   2        2          2            2     
---------------- - -----------------------
       a                      a           
$$\frac{\frac{\log{\left(- a \right)}}{2} - \frac{\log{\left(a \right)}}{2}}{a} - \frac{\frac{\log{\left(1 - a \right)}}{2} - \frac{\log{\left(a + 1 \right)}}{2}}{a}$$
(log(-a)/2 - log(a)/2)/a - (log(1 - a)/2 - log(1 + a)/2)/a

    Use the examples entering the upper and lower limits of integration.