Mister Exam

Other calculators

Integral of 1/((9x^2)+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo            
  /            
 |             
 |     1       
 |  -------- dx
 |     2       
 |  9*x  + 1   
 |             
/              
0              
$$\int\limits_{0}^{\infty} \frac{1}{9 x^{2} + 1}\, dx$$
Integral(1/(9*x^2 + 1), (x, 0, oo))
Detail solution
We have the integral:
  /           
 |            
 |    1       
 | -------- dx
 |    2       
 | 9*x  + 1   
 |            
/             
Rewrite the integrand
   1              1       
-------- = ---------------
   2         /      2    \
9*x  + 1   1*\(-3*x)  + 1/
or
  /             
 |              
 |    1         
 | -------- dx  
 |    2        =
 | 9*x  + 1     
 |              
/               
  
  /              
 |               
 |      1        
 | ----------- dx
 |       2       
 | (-3*x)  + 1   
 |               
/                
In the integral
  /              
 |               
 |      1        
 | ----------- dx
 |       2       
 | (-3*x)  + 1   
 |               
/                
do replacement
v = -3*x
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv = atan(v)
 |      2             
 | 1 + v              
 |                    
/                     
do backward replacement
  /                          
 |                           
 |      1           atan(3*x)
 | ----------- dx = ---------
 |       2              3    
 | (-3*x)  + 1               
 |                           
/                            
Solution is:
    atan(3*x)
C + ---------
        3    
The answer (Indefinite) [src]
  /                           
 |                            
 |    1              atan(3*x)
 | -------- dx = C + ---------
 |    2                  3    
 | 9*x  + 1                   
 |                            
/                             
$$\int \frac{1}{9 x^{2} + 1}\, dx = C + \frac{\operatorname{atan}{\left(3 x \right)}}{3}$$
The graph
The answer [src]
pi
--
6 
$$\frac{\pi}{6}$$
=
=
pi
--
6 
$$\frac{\pi}{6}$$
pi/6

    Use the examples entering the upper and lower limits of integration.