Mister Exam

Other calculators

Integral of 1/(9x^2-9x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |     2             
 |  9*x  - 9*x + 2   
 |                   
/                    
0                    
01(9x29x)+2dx\int\limits_{0}^{\infty} \frac{1}{\left(9 x^{2} - 9 x\right) + 2}\, dx
Integral(1/(9*x^2 - 9*x + 2), (x, 0, oo))
The answer (Indefinite) [src]
  /                                                     
 |                                                      
 |       1                 log(-2 + 6*x)   log(-4 + 6*x)
 | -------------- dx = C - ------------- + -------------
 |    2                          3               3      
 | 9*x  - 9*x + 2                                       
 |                                                      
/                                                       
1(9x29x)+2dx=C+log(6x4)3log(6x2)3\int \frac{1}{\left(9 x^{2} - 9 x\right) + 2}\, dx = C + \frac{\log{\left(6 x - 4 \right)}}{3} - \frac{\log{\left(6 x - 2 \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.000.75
The answer [src]
nan
NaN\text{NaN}
=
=
nan
NaN\text{NaN}
nan

    Use the examples entering the upper and lower limits of integration.