Mister Exam

Other calculators

Integral of 1/(5x+2*sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  9                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |            ___   
 |  5*x + 2*\/ x    
 |                  
/                   
1                   
$$\int\limits_{1}^{9} \frac{1}{2 \sqrt{x} + 5 x}\, dx$$
Integral(1/(5*x + 2*sqrt(x)), (x, 1, 9))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                             /        ___\
 |       1                2*log\2 + 5*\/ x /
 | ------------- dx = C + ------------------
 |           ___                  5         
 | 5*x + 2*\/ x                             
 |                                          
/                                           
$$\int \frac{1}{2 \sqrt{x} + 5 x}\, dx = C + \frac{2 \log{\left(5 \sqrt{x} + 2 \right)}}{5}$$
The graph
The answer [src]
  2*log(7/5)   2*log(17/5)
- ---------- + -----------
      5             5     
$$- \frac{2 \log{\left(\frac{7}{5} \right)}}{5} + \frac{2 \log{\left(\frac{17}{5} \right)}}{5}$$
=
=
  2*log(7/5)   2*log(17/5)
- ---------- + -----------
      5             5     
$$- \frac{2 \log{\left(\frac{7}{5} \right)}}{5} + \frac{2 \log{\left(\frac{17}{5} \right)}}{5}$$
-2*log(7/5)/5 + 2*log(17/5)/5
Numerical answer [src]
0.354921278000361
0.354921278000361

    Use the examples entering the upper and lower limits of integration.