9 / | | 1 | ------------- dx | ___ | 5*x + 2*\/ x | / 1
Integral(1/(5*x + 2*sqrt(x)), (x, 1, 9))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | / ___\ | 1 2*log\2 + 5*\/ x / | ------------- dx = C + ------------------ | ___ 5 | 5*x + 2*\/ x | /
2*log(7/5) 2*log(17/5) - ---------- + ----------- 5 5
=
2*log(7/5) 2*log(17/5) - ---------- + ----------- 5 5
-2*log(7/5)/5 + 2*log(17/5)/5
Use the examples entering the upper and lower limits of integration.