Mister Exam

Other calculators

Integral of 1/(5cosx+3sin3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |  5*cos(x) + 3*sin(3)   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{5 \cos{\left(x \right)} + 3 \sin{\left(3 \right)}}\, dx$$
Integral(1/(5*cos(x) + 3*sin(3)), (x, 0, 1))
The answer [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |  3*sin(3) + 5*cos(x)   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{5 \cos{\left(x \right)} + 3 \sin{\left(3 \right)}}\, dx$$
=
=
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |  3*sin(3) + 5*cos(x)   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{5 \cos{\left(x \right)} + 3 \sin{\left(3 \right)}}\, dx$$
Integral(1/(3*sin(3) + 5*cos(x)), (x, 0, 1))
Numerical answer [src]
0.221504812382354
0.221504812382354

    Use the examples entering the upper and lower limits of integration.