Integral of 1/((3x^2)-5) dx
The solution
Detail solution
-
Rewrite the integrand:
1⋅3x2−51=3015(−x+3151+x−3151)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3015(−x+3151+x−3151)dx=3015∫(−x+3151+x−3151)dx
-
Integrate term-by-term:
-
The integral of x−3151 is log(x−315).
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x+3151)dx=−∫x+3151dx
-
The integral of x+3151 is log(x+315).
So, the result is: −log(x+315)
The result is: log(x−315)−log(x+315)
So, the result is: 3015(log(x−315)−log(x+315))
-
Add the constant of integration:
3015(log(x−315)−log(x+315))+constant
The answer is:
3015(log(x−315)−log(x+315))+constant
The answer (Indefinite)
[src]
/ / ____\ / ____\\
/ ____ | | \/ 15 | | \/ 15 ||
| \/ 15 *|- log|x + ------| + log|x - ------||
| 1 \ \ 3 / \ 3 //
| 1*-------- dx = C + --------------------------------------------
| 2 30
| 3*x - 5
|
/
215log(6x+2156x−215)
The graph
/ / ____\\ / ____\ / / ____\\ / ____\
____ | |\/ 15 || ____ | \/ 15 | ____ | | \/ 15 || ____ |\/ 15 |
\/ 15 *|pi*I + log|------|| \/ 15 *log|1 + ------| \/ 15 *|pi*I + log|-1 + ------|| \/ 15 *log|------|
\ \ 3 // \ 3 / \ \ 3 // \ 3 /
- --------------------------- - ---------------------- + -------------------------------- + ------------------
30 30 30 30
215log(4−15)
=
/ / ____\\ / ____\ / / ____\\ / ____\
____ | |\/ 15 || ____ | \/ 15 | ____ | | \/ 15 || ____ |\/ 15 |
\/ 15 *|pi*I + log|------|| \/ 15 *log|1 + ------| \/ 15 *|pi*I + log|-1 + ------|| \/ 15 *log|------|
\ \ 3 // \ 3 / \ \ 3 // \ 3 /
- --------------------------- - ---------------------- + -------------------------------- + ------------------
30 30 30 30
−3015log(1+315)+3015log(315)−3015(log(315)+iπ)+3015(log(−1+315)+iπ)
Use the examples entering the upper and lower limits of integration.