Mister Exam

Other calculators


1/((3x^2)-5)

Integral of 1/((3x^2)-5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |       1       
 |  1*-------- dx
 |       2       
 |    3*x  - 5   
 |               
/                
0                
01113x25dx\int\limits_{0}^{1} 1 \cdot \frac{1}{3 x^{2} - 5}\, dx
Integral(1/(3*x^2 - 1*5), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    113x25=1530(1x+153+1x153)1 \cdot \frac{1}{3 x^{2} - 5} = \frac{\sqrt{15}}{30} \left(- \frac{1}{x + \frac{\sqrt{15}}{3}} + \frac{1}{x - \frac{\sqrt{15}}{3}}\right)

  2. The integral of a constant times a function is the constant times the integral of the function:

    1530(1x+153+1x153)dx=15(1x+153+1x153)dx30\int \frac{\sqrt{15}}{30} \left(- \frac{1}{x + \frac{\sqrt{15}}{3}} + \frac{1}{x - \frac{\sqrt{15}}{3}}\right)\, dx = \frac{\sqrt{15} \int \left(- \frac{1}{x + \frac{\sqrt{15}}{3}} + \frac{1}{x - \frac{\sqrt{15}}{3}}\right)\, dx}{30}

    1. Integrate term-by-term:

      1. The integral of 1x153\frac{1}{x - \frac{\sqrt{15}}{3}} is log(x153)\log{\left(x - \frac{\sqrt{15}}{3} \right)}.

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1x+153)dx=1x+153dx\int \left(- \frac{1}{x + \frac{\sqrt{15}}{3}}\right)\, dx = - \int \frac{1}{x + \frac{\sqrt{15}}{3}}\, dx

        1. The integral of 1x+153\frac{1}{x + \frac{\sqrt{15}}{3}} is log(x+153)\log{\left(x + \frac{\sqrt{15}}{3} \right)}.

        So, the result is: log(x+153)- \log{\left(x + \frac{\sqrt{15}}{3} \right)}

      The result is: log(x153)log(x+153)\log{\left(x - \frac{\sqrt{15}}{3} \right)} - \log{\left(x + \frac{\sqrt{15}}{3} \right)}

    So, the result is: 15(log(x153)log(x+153))30\frac{\sqrt{15} \left(\log{\left(x - \frac{\sqrt{15}}{3} \right)} - \log{\left(x + \frac{\sqrt{15}}{3} \right)}\right)}{30}

  3. Add the constant of integration:

    15(log(x153)log(x+153))30+constant\frac{\sqrt{15} \left(\log{\left(x - \frac{\sqrt{15}}{3} \right)} - \log{\left(x + \frac{\sqrt{15}}{3} \right)}\right)}{30}+ \mathrm{constant}


The answer is:

15(log(x153)log(x+153))30+constant\frac{\sqrt{15} \left(\log{\left(x - \frac{\sqrt{15}}{3} \right)} - \log{\left(x + \frac{\sqrt{15}}{3} \right)}\right)}{30}+ \mathrm{constant}

The answer (Indefinite) [src]
                              /     /      ____\      /      ____\\
  /                      ____ |     |    \/ 15 |      |    \/ 15 ||
 |                     \/ 15 *|- log|x + ------| + log|x - ------||
 |      1                     \     \      3   /      \      3   //
 | 1*-------- dx = C + --------------------------------------------
 |      2                                   30                     
 |   3*x  - 5                                                      
 |                                                                 
/                                                                  
log(6x2156x+215)215{{\log \left({{6\,x-2\,\sqrt{15}}\over{6\,x+2\,\sqrt{15}}}\right) }\over{2\,\sqrt{15}}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1.00.0
The answer [src]
         /          /  ____\\             /      ____\          /          /       ____\\             /  ____\
    ____ |          |\/ 15 ||     ____    |    \/ 15 |     ____ |          |     \/ 15 ||     ____    |\/ 15 |
  \/ 15 *|pi*I + log|------||   \/ 15 *log|1 + ------|   \/ 15 *|pi*I + log|-1 + ------||   \/ 15 *log|------|
         \          \  3   //             \      3   /          \          \       3   //             \  3   /
- --------------------------- - ---------------------- + -------------------------------- + ------------------
               30                         30                            30                          30        
log(415)215{{\log \left(4-\sqrt{15}\right)}\over{2\,\sqrt{15}}}
=
=
         /          /  ____\\             /      ____\          /          /       ____\\             /  ____\
    ____ |          |\/ 15 ||     ____    |    \/ 15 |     ____ |          |     \/ 15 ||     ____    |\/ 15 |
  \/ 15 *|pi*I + log|------||   \/ 15 *log|1 + ------|   \/ 15 *|pi*I + log|-1 + ------||   \/ 15 *log|------|
         \          \  3   //             \      3   /          \          \       3   //             \  3   /
- --------------------------- - ---------------------- + -------------------------------- + ------------------
               30                         30                            30                          30        
15log(1+153)30+15log(153)3015(log(153)+iπ)30+15(log(1+153)+iπ)30- \frac{\sqrt{15} \log{\left(1 + \frac{\sqrt{15}}{3} \right)}}{30} + \frac{\sqrt{15} \log{\left(\frac{\sqrt{15}}{3} \right)}}{30} - \frac{\sqrt{15} \left(\log{\left(\frac{\sqrt{15}}{3} \right)} + i \pi\right)}{30} + \frac{\sqrt{15} \left(\log{\left(-1 + \frac{\sqrt{15}}{3} \right)} + i \pi\right)}{30}
Numerical answer [src]
-0.266388580125985
-0.266388580125985
The graph
Integral of 1/((3x^2)-5) dx

    Use the examples entering the upper and lower limits of integration.