Mister Exam

Other calculators


1/(3x-4*(x^1/2))

Integral of 1/(3x-4*(x^1/2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |          1         
 |  1*------------- dx
 |              ___   
 |    3*x - 4*\/ x    
 |                    
/                     
0                     
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{- 4 \sqrt{x} + 3 x}\, dx$$
Integral(1/(3*x - 4*sqrt(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                
 |                             /    ___\      /         ___\      /      ___      \
 |         1                log\3*\/ x /   log\-4 + 3*\/ x /   log\- 4*\/ x  + 3*x/
 | 1*------------- dx = C - ------------ + ----------------- + --------------------
 |             ___               3                 3                    3          
 |   3*x - 4*\/ x                                                                  
 |                                                                                 
/                                                                                  
$${{2\,\log \left(3\,\sqrt{x}-4\right)}\over{3}}$$
The graph
The answer [src]
-2*log(4)
---------
    3    
$$-{{2\,\log 4}\over{3}}$$
=
=
-2*log(4)
---------
    3    
$$- \frac{2 \log{\left(4 \right)}}{3}$$
Numerical answer [src]
-0.924196240579125
-0.924196240579125
The graph
Integral of 1/(3x-4*(x^1/2)) dx

    Use the examples entering the upper and lower limits of integration.