Mister Exam

Other calculators

Integral of 1/((2x+3)(sqrt(ln(2x+3)))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                              
  /                              
 |                               
 |              1                
 |  -------------------------- dx
 |              ______________   
 |  (2*x + 3)*\/ log(2*x + 3)    
 |                               
/                                
0                                
$$\int\limits_{0}^{1} \frac{1}{\left(2 x + 3\right) \sqrt{\log{\left(2 x + 3 \right)}}}\, dx$$
Integral(1/((2*x + 3)*sqrt(log(2*x + 3))), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant is the constant times the variable of integration:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant is the constant times the variable of integration:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |             1                         ______________
 | -------------------------- dx = C + \/ log(3 + 2*x) 
 |             ______________                          
 | (2*x + 3)*\/ log(2*x + 3)                           
 |                                                     
/                                                      
$$\int \frac{1}{\left(2 x + 3\right) \sqrt{\log{\left(2 x + 3 \right)}}}\, dx = C + \sqrt{\log{\left(2 x + 3 \right)}}$$
The graph
The answer [src]
  ________     ________
\/ log(5)  - \/ log(3) 
$$- \sqrt{\log{\left(3 \right)}} + \sqrt{\log{\left(5 \right)}}$$
=
=
  ________     ________
\/ log(5)  - \/ log(3) 
$$- \sqrt{\log{\left(3 \right)}} + \sqrt{\log{\left(5 \right)}}$$
sqrt(log(5)) - sqrt(log(3))
Numerical answer [src]
0.220489167211315
0.220489167211315

    Use the examples entering the upper and lower limits of integration.