1 / | | 1 | -------------------------- dx | ______________ | (2*x + 3)*\/ log(2*x + 3) | / 0
Integral(1/((2*x + 3)*sqrt(log(2*x + 3))), (x, 0, 1))
There are multiple ways to do this integral.
Rewrite the integrand:
Let .
Then let and substitute :
The integral of a constant is the constant times the variable of integration:
Now substitute back in:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of a constant is the constant times the variable of integration:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | 1 ______________ | -------------------------- dx = C + \/ log(3 + 2*x) | ______________ | (2*x + 3)*\/ log(2*x + 3) | /
________ ________ \/ log(5) - \/ log(3)
=
________ ________ \/ log(5) - \/ log(3)
sqrt(log(5)) - sqrt(log(3))
Use the examples entering the upper and lower limits of integration.