Mister Exam

Other calculators

Integral of 1/((2x+5)^(3/4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |           3/4   
 |  (2*x + 5)      
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\left(2 x + 5\right)^{\frac{3}{4}}}\, dx$$
Integral(1/((2*x + 5)^(3/4)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |      1                  4 _________
 | ------------ dx = C + 2*\/ 2*x + 5 
 |          3/4                       
 | (2*x + 5)                          
 |                                    
/                                     
$$\int \frac{1}{\left(2 x + 5\right)^{\frac{3}{4}}}\, dx = C + 2 \sqrt[4]{2 x + 5}$$
The graph
The answer [src]
    4 ___     4 ___
- 2*\/ 5  + 2*\/ 7 
$$- 2 \sqrt[4]{5} + 2 \sqrt[4]{7}$$
=
=
    4 ___     4 ___
- 2*\/ 5  + 2*\/ 7 
$$- 2 \sqrt[4]{5} + 2 \sqrt[4]{7}$$
-2*5^(1/4) + 2*7^(1/4)
Numerical answer [src]
0.26245556095313
0.26245556095313

    Use the examples entering the upper and lower limits of integration.