Mister Exam

Other calculators

Integral of 1/2x+5*sqrt(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |  /x       ___\   
 |  |- + 5*\/ x | dx
 |  \2          /   
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \left(5 \sqrt{x} + \frac{x}{2}\right)\, dx$$
Integral(x/2 + 5*sqrt(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                         2       3/2
 | /x       ___\          x    10*x   
 | |- + 5*\/ x | dx = C + -- + -------
 | \2          /          4       3   
 |                                    
/                                     
$$\int \left(5 \sqrt{x} + \frac{x}{2}\right)\, dx = C + \frac{10 x^{\frac{3}{2}}}{3} + \frac{x^{2}}{4}$$
The graph
The answer [src]
43
--
12
$$\frac{43}{12}$$
=
=
43
--
12
$$\frac{43}{12}$$
43/12
Numerical answer [src]
3.58333333333333
3.58333333333333

    Use the examples entering the upper and lower limits of integration.