Mister Exam

Other calculators

Integral of 1/((2x-1)*ln(x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                        
  /                        
 |                         
 |           1             
 |  -------------------- dx
 |  (2*x - 1)*log(x + 1)   
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \frac{1}{\left(2 x - 1\right) \log{\left(x + 1 \right)}}\, dx$$
Integral(1/((2*x - 1)*log(x + 1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                /                        
 |                                |                         
 |          1                     |           1             
 | -------------------- dx = C +  | --------------------- dx
 | (2*x - 1)*log(x + 1)           | (-1 + 2*x)*log(1 + x)   
 |                                |                         
/                                /                          
$$\int \frac{1}{\left(2 x - 1\right) \log{\left(x + 1 \right)}}\, dx = C + \int \frac{1}{\left(2 x - 1\right) \log{\left(x + 1 \right)}}\, dx$$
The answer [src]
  1                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |  (-1 + 2*x)*log(1 + x)   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \frac{1}{\left(2 x - 1\right) \log{\left(x + 1 \right)}}\, dx$$
=
=
  1                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |  (-1 + 2*x)*log(1 + x)   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \frac{1}{\left(2 x - 1\right) \log{\left(x + 1 \right)}}\, dx$$
Integral(1/((-1 + 2*x)*log(1 + x)), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.