Mister Exam

Other calculators

Integral of 1/(2n-1)*ln(n+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo              
  /              
 |               
 |  log(n + 1)   
 |  ---------- dn
 |   2*n - 1     
 |               
/                
2                
$$\int\limits_{2}^{\infty} \frac{\log{\left(n + 1 \right)}}{2 n - 1}\, dn$$
Integral(log(n + 1)/(2*n - 1), (n, 2, oo))
The answer (Indefinite) [src]
  /                      /             
 |                      |              
 | log(n + 1)           | log(1 + n)   
 | ---------- dn = C +  | ---------- dn
 |  2*n - 1             |  -1 + 2*n    
 |                      |              
/                      /               
$$\int \frac{\log{\left(n + 1 \right)}}{2 n - 1}\, dn = C + \int \frac{\log{\left(n + 1 \right)}}{2 n - 1}\, dn$$
The answer [src]
 oo              
  /              
 |               
 |  log(1 + n)   
 |  ---------- dn
 |   -1 + 2*n    
 |               
/                
2                
$$\int\limits_{2}^{\infty} \frac{\log{\left(n + 1 \right)}}{2 n - 1}\, dn$$
=
=
 oo              
  /              
 |               
 |  log(1 + n)   
 |  ---------- dn
 |   -1 + 2*n    
 |               
/                
2                
$$\int\limits_{2}^{\infty} \frac{\log{\left(n + 1 \right)}}{2 n - 1}\, dn$$
Integral(log(1 + n)/(-1 + 2*n), (n, 2, oo))

    Use the examples entering the upper and lower limits of integration.