Mister Exam

Other calculators

Integral of 1/((10x+5)*ln(10x+5)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  a                            
  /                            
 |                             
 |             1               
 |  ------------------------ dx
 |  (10*x + 5)*log(10*x + 5)   
 |                             
/                              
1                              
$$\int\limits_{1}^{a} \frac{1}{\left(10 x + 5\right) \log{\left(10 x + 5 \right)}}\, dx$$
Integral(1/((10*x + 5)*log(10*x + 5)), (x, 1, a))
The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |            1                      log(log(5 + 10*x))
 | ------------------------ dx = C + ------------------
 | (10*x + 5)*log(10*x + 5)                  10        
 |                                                     
/                                                      
$$\int \frac{1}{\left(10 x + 5\right) \log{\left(10 x + 5 \right)}}\, dx = C + \frac{\log{\left(\log{\left(10 x + 5 \right)} \right)}}{10}$$
The answer [src]
  log(log(15))   log(log(5 + 10*a))
- ------------ + ------------------
       10                10        
$$\frac{\log{\left(\log{\left(10 a + 5 \right)} \right)}}{10} - \frac{\log{\left(\log{\left(15 \right)} \right)}}{10}$$
=
=
  log(log(15))   log(log(5 + 10*a))
- ------------ + ------------------
       10                10        
$$\frac{\log{\left(\log{\left(10 a + 5 \right)} \right)}}{10} - \frac{\log{\left(\log{\left(15 \right)} \right)}}{10}$$
-log(log(15))/10 + log(log(5 + 10*a))/10

    Use the examples entering the upper and lower limits of integration.