Mister Exam

Other calculators

Integral of -x²+2x+3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  3                    
  /                    
 |                     
 |  /   2          \   
 |  \- x  + 2*x + 3/ dx
 |                     
/                      
-1                     
$$\int\limits_{-1}^{3} \left(\left(- x^{2} + 2 x\right) + 3\right)\, dx$$
Integral(-x^2 + 2*x + 3, (x, -1, 3))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                       3
 | /   2          \           2         x 
 | \- x  + 2*x + 3/ dx = C + x  + 3*x - --
 |                                      3 
/                                         
$$\int \left(\left(- x^{2} + 2 x\right) + 3\right)\, dx = C - \frac{x^{3}}{3} + x^{2} + 3 x$$
The graph
The answer [src]
32/3
$$\frac{32}{3}$$
=
=
32/3
$$\frac{32}{3}$$
32/3
Numerical answer [src]
10.6666666666667
10.6666666666667

    Use the examples entering the upper and lower limits of integration.