Mister Exam

Other calculators


-(2x^2-x-1)

Integral of -(2x^2-x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 -1                  
  /                  
 |                   
 |  /           2\   
 |  \1 + x - 2*x / dx
 |                   
/                    
1                    
$$\int\limits_{1}^{-1} \left(- 2 x^{2} + x + 1\right)\, dx$$
Integral(1 + x - 2*x^2, (x, 1, -1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                     
 |                              2      3
 | /           2\              x    2*x 
 | \1 + x - 2*x / dx = C + x + -- - ----
 |                             2     3  
/                                       
$$-{{2\,x^3}\over{3}}+{{x^2}\over{2}}+x$$
The graph
The answer [src]
-2/3
$$-{{2}\over{3}}$$
=
=
-2/3
$$- \frac{2}{3}$$
Numerical answer [src]
-0.666666666666667
-0.666666666666667
The graph
Integral of -(2x^2-x-1) dx

    Use the examples entering the upper and lower limits of integration.