Mister Exam

Other calculators


-sint*(cost)^2

Integral of -sint*(cost)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |             2      
 |  -sin(t)*cos (t) dt
 |                    
/                     
0                     
$$\int\limits_{0}^{1} - \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt$$
Integral((-sin(t))*cos(t)^2, (t, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is when :

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                             3   
 |            2             cos (t)
 | -sin(t)*cos (t) dt = C + -------
 |                             3   
/                                  
$$\int - \sin{\left(t \right)} \cos^{2}{\left(t \right)}\, dt = C + \frac{\cos^{3}{\left(t \right)}}{3}$$
The graph
The answer [src]
         3   
  1   cos (1)
- - + -------
  3      3   
$$- \frac{1}{3} + \frac{\cos^{3}{\left(1 \right)}}{3}$$
=
=
         3   
  1   cos (1)
- - + -------
  3      3   
$$- \frac{1}{3} + \frac{\cos^{3}{\left(1 \right)}}{3}$$
-1/3 + cos(1)^3/3
Numerical answer [src]
-0.280757131583002
-0.280757131583002
The graph
Integral of -sint*(cost)^2 dx

    Use the examples entering the upper and lower limits of integration.