1 / | | 2 | -sin(t)*cos (t) dt | / 0
Integral((-sin(t))*cos(t)^2, (t, 0, 1))
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Add the constant of integration:
The answer is:
/ | 3 | 2 cos (t) | -sin(t)*cos (t) dt = C + ------- | 3 /
3 1 cos (1) - - + ------- 3 3
=
3 1 cos (1) - - + ------- 3 3
-1/3 + cos(1)^3/3
Use the examples entering the upper and lower limits of integration.