Mister Exam

Other calculators

Integral of (-1)/(y^2+y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |   -1      
 |  ------ dy
 |   2       
 |  y  + y   
 |           
/            
0            
$$\int\limits_{0}^{1} \left(- \frac{1}{y^{2} + y}\right)\, dy$$
Integral(-1/(y^2 + y), (y, 0, 1))
The answer (Indefinite) [src]
  /                                       
 |                                        
 |  -1                                    
 | ------ dy = C - log(2*y) + log(2 + 2*y)
 |  2                                     
 | y  + y                                 
 |                                        
/                                         
$$\int \left(- \frac{1}{y^{2} + y}\right)\, dy = C - \log{\left(2 y \right)} + \log{\left(2 y + 2 \right)}$$
The graph
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-43.3972989534329
-43.3972989534329

    Use the examples entering the upper and lower limits of integration.