Mister Exam

Other calculators

Integral of (-1)/sqrt(y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |   -1     
 |  ----- dy
 |    ___   
 |  \/ y    
 |          
/           
0           
01(1y)dy\int\limits_{0}^{1} \left(- \frac{1}{\sqrt{y}}\right)\, dy
Integral(-1/sqrt(y), (y, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (1y)dy=1ydy\int \left(- \frac{1}{\sqrt{y}}\right)\, dy = - \int \frac{1}{\sqrt{y}}\, dy

    1. Let u=yu = \sqrt{y}.

      Then let du=dy2ydu = \frac{dy}{2 \sqrt{y}} and substitute 2du2 du:

      2du\int 2\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: 2u2 u

      Now substitute uu back in:

      2y2 \sqrt{y}

    So, the result is: 2y- 2 \sqrt{y}

  2. Add the constant of integration:

    2y+constant- 2 \sqrt{y}+ \mathrm{constant}


The answer is:

2y+constant- 2 \sqrt{y}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |  -1                ___
 | ----- dy = C - 2*\/ y 
 |   ___                 
 | \/ y                  
 |                       
/                        
(1y)dy=C2y\int \left(- \frac{1}{\sqrt{y}}\right)\, dy = C - 2 \sqrt{y}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-100100
The answer [src]
-2
2-2
=
=
-2
2-2
-2
Numerical answer [src]
-1.99999999946942
-1.99999999946942

    Use the examples entering the upper and lower limits of integration.