Mister Exam

Integral of -lgx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  -log(x) dx
 |            
/             
0             
01(log(x))dx\int\limits_{0}^{1} \left(- \log{\left(x \right)}\right)\, dx
Integral(-log(x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (log(x))dx=log(x)dx\int \left(- \log{\left(x \right)}\right)\, dx = - \int \log{\left(x \right)}\, dx

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

      Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      Now evaluate the sub-integral.

    2. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    So, the result is: xlog(x)+x- x \log{\left(x \right)} + x

  2. Now simplify:

    x(1log(x))x \left(1 - \log{\left(x \right)}\right)

  3. Add the constant of integration:

    x(1log(x))+constantx \left(1 - \log{\left(x \right)}\right)+ \mathrm{constant}


The answer is:

x(1log(x))+constantx \left(1 - \log{\left(x \right)}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 | -log(x) dx = C + x - x*log(x)
 |                              
/                               
(log(x))dx=Cxlog(x)+x\int \left(- \log{\left(x \right)}\right)\, dx = C - x \log{\left(x \right)} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
1
11
=
=
1
11
1
Numerical answer [src]
1.0
1.0

    Use the examples entering the upper and lower limits of integration.