Mister Exam

Other calculators

Integral of -(e^x)*sin(y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x              
  /              
 |               
 |    x          
 |  -E *sin(y) dx
 |               
/                
0                
0xexsin(y)dx\int\limits_{0}^{x} - e^{x} \sin{\left(y \right)}\, dx
Integral((-E^x)*sin(y), (x, 0, x))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    exsin(y)dx=sin(y)(ex)dx\int - e^{x} \sin{\left(y \right)}\, dx = \sin{\left(y \right)} \int \left(- e^{x}\right)\, dx

    1. The integral of a constant times a function is the constant times the integral of the function:

      (ex)dx=exdx\int \left(- e^{x}\right)\, dx = - \int e^{x}\, dx

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      So, the result is: ex- e^{x}

    So, the result is: exsin(y)- e^{x} \sin{\left(y \right)}

  2. Add the constant of integration:

    exsin(y)+constant- e^{x} \sin{\left(y \right)}+ \mathrm{constant}


The answer is:

exsin(y)+constant- e^{x} \sin{\left(y \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 |   x                  x       
 | -E *sin(y) dx = C - e *sin(y)
 |                              
/                               
exsin(y)dx=Cexsin(y)\int - e^{x} \sin{\left(y \right)}\, dx = C - e^{x} \sin{\left(y \right)}
The answer [src]
   x                
- e *sin(y) + sin(y)
exsin(y)+sin(y)- e^{x} \sin{\left(y \right)} + \sin{\left(y \right)}
=
=
   x                
- e *sin(y) + sin(y)
exsin(y)+sin(y)- e^{x} \sin{\left(y \right)} + \sin{\left(y \right)}
-exp(x)*sin(y) + sin(y)

    Use the examples entering the upper and lower limits of integration.