Mister Exam

Other calculators

Integral of -4x*exp(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |        4*x   
 |  -4*x*e    dx
 |              
/               
0               
$$\int\limits_{0}^{1} - 4 x e^{4 x}\, dx$$
Integral((-4*x)*exp(4*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of the exponential function is itself.

        So, the result is:

      Now substitute back in:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                     4*x         
 |       4*x          e         4*x
 | -4*x*e    dx = C + ---- - x*e   
 |                     4           
/                                  
$$\int - 4 x e^{4 x}\, dx = C - x e^{4 x} + \frac{e^{4 x}}{4}$$
The graph
The answer [src]
         4
  1   3*e 
- - - ----
  4    4  
$$- \frac{3 e^{4}}{4} - \frac{1}{4}$$
=
=
         4
  1   3*e 
- - - ----
  4    4  
$$- \frac{3 e^{4}}{4} - \frac{1}{4}$$
-1/4 - 3*exp(4)/4
Numerical answer [src]
-41.1986125248582
-41.1986125248582

    Use the examples entering the upper and lower limits of integration.