Mister Exam

Integral of -3ysinx+12ycosx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*pi                              
   /                               
  |                                
  |  (-3*y*sin(x) + 12*y*cos(x)) dx
  |                                
 /                                 
 0                                 
02π(3ysin(x)+12ycos(x))dx\int\limits_{0}^{2 \pi} \left(- 3 y \sin{\left(x \right)} + 12 y \cos{\left(x \right)}\right)\, dx
Integral((-3*y)*sin(x) + (12*y)*cos(x), (x, 0, 2*pi))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      3ysin(x)dx=3ysin(x)dx\int - 3 y \sin{\left(x \right)}\, dx = - 3 y \int \sin{\left(x \right)}\, dx

      1. The integral of sine is negative cosine:

        sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

      So, the result is: 3ycos(x)3 y \cos{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      12ycos(x)dx=12ycos(x)dx\int 12 y \cos{\left(x \right)}\, dx = 12 y \int \cos{\left(x \right)}\, dx

      1. The integral of cosine is sine:

        cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

      So, the result is: 12ysin(x)12 y \sin{\left(x \right)}

    The result is: 12ysin(x)+3ycos(x)12 y \sin{\left(x \right)} + 3 y \cos{\left(x \right)}

  2. Now simplify:

    3y(4sin(x)+cos(x))3 y \left(4 \sin{\left(x \right)} + \cos{\left(x \right)}\right)

  3. Add the constant of integration:

    3y(4sin(x)+cos(x))+constant3 y \left(4 \sin{\left(x \right)} + \cos{\left(x \right)}\right)+ \mathrm{constant}


The answer is:

3y(4sin(x)+cos(x))+constant3 y \left(4 \sin{\left(x \right)} + \cos{\left(x \right)}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                             
 |                                                              
 | (-3*y*sin(x) + 12*y*cos(x)) dx = C + 3*y*cos(x) + 12*y*sin(x)
 |                                                              
/                                                               
(3ysin(x)+12ycos(x))dx=C+12ysin(x)+3ycos(x)\int \left(- 3 y \sin{\left(x \right)} + 12 y \cos{\left(x \right)}\right)\, dx = C + 12 y \sin{\left(x \right)} + 3 y \cos{\left(x \right)}
The answer [src]
0
00
=
=
0
00
0

    Use the examples entering the upper and lower limits of integration.